Upgrades to the Operational Monte Carlo Wind Speed Probability Program

Andrea Schumacher, CIRA / Colorado State University

6th NOAA Testbed and Proving Ground Workshop 14-16 April 2015, Boulder, CO

Outline

- Joint Hurricane Testbed Project, 2013-2015
- Overview of Monte Carlo Wind Speed Probability Program
- Algorithm Improvements
 - Motivation, methodology, impacts
 - Operational decisions balancing the impacts
- Product Additions / Enhancements

The Monte Carlo Wind Speed Probability Program

- MC Model Basics
 - Estimates probability of 34-, 50- and 64-kt wind to 5 days
 - 1000 track realizations generated from random sampling NHC track and intensity error distributions
 - Wind radii of realizations from radii CLIPER model and its radii error distributions
 - Serial correlation of errors included
 - Probability at a point computed by counting the number of realizations passing within the wind radii of interest
- Developed under Joint Hurricane Testbed (JHT) support
 - Implemented at NHC for 2006 hurricane season
 - Replaced Hurricane Strike Probabilities
- Improvements under JHT support
 - Inclusion of Goerss Predicted Consensus Error (GPCE)
 - Hurricane Landfall Probability Application (HuLPA)
 - Other minor corrections

Example of 64-kt Wind Speed Probabilities for Hurricane Ike 2008. http://www.nhc.noaa.gov

3 Improvements to the MC model algorithm

(2013 - 2015 JHT Project)

- Motivation
- Methodology
- Impacts

Improve time interpolation scheme

Motivation

- MC model needs track forecast at higher temporal resolution than operational forecasts
- Linear interpolation between time steps introduces track errors
 - Slight eastward bias for recurving TCs
 - Typically on the order of ±1-5% (can be 20-30%)
- Methodology
 - Replaced linear interpolation with spline fit

Impacts – spline fit

Smoother, more realistic looking realization tracks

Linear Interpolation

Spline Fit

Earl on 31 Aug 2010 at 0Z - using linear interpolation (left) vs. spline (right). Images courtesy of C. Ogden, NHC.

Impacts – spline fit

Higher probabilities along coast for recurving tropical cyclones

Along NC coast, highest probabilities ~ 50-60%

Along NC coast, highest probabilities ~ 70-80%

Impacts – spline fit

Higher probabilities along coast for recurving tropical cyclones

Standardize error statistics

- Motivation
 - Error statistics used to develop wind speed probabilities are slightly different than the official NHC errors include non-tropical systems (extratropical, post-tropical)
- Methodology
 - Updated MC model error statistics to match NHC errors statistics
- Impacts
 - Improve consistency between NHC uncertainty products

Track errors were too large

Intensity errors were too small

Radii bias correction

Motivation

- MC model uses radii-CLIPER (climatology and persistence) model to estimate wind radii
 - Contribution of persistence has e-folding time of 32 hours (DeMaria et al. 2009)
 - For TCs much smaller (larger) than climatology, radii-CLIPER potentially overestimates (underestimates) radii for t > 32 hours

Methodology

- Bias Correction (BC) = (OFCL radius forecast) (ensemble mean)
- BC added to all realization radii
- When official radius forecast not available, use last available BC weighted by time to last forecast (efolding time ~36 hours)

E.g., Hurricane Sandy, 10/27/12 12Z

Impacts – radii bias correction

Current Algorithm

Radii bias correction

Evaluating the updates

- Cases (already shown)
- Real-time display for monitoring
 - Parallel runs at CIRA
 - Each update displayed separately
 - Difference plots (example →)
- Quantitative evaluation
 - Use Best Track position, intensity, and radii estimates as ground truth
 - Compute Brier scores and biases for each update individually
 - 3-year sample (2011-2013)

Quantitative evaluation of each update

- Balancing impacts
 - Spline fit realization tracks look more realistic, may provide substantial improvement for recurving cases along U.S. coast
 - Updating error statistics provides consistency among NHC's uncertainty products, potential future application of MC model in generating dynamic cone of uncertainty
 - Radii bias correction positive impact on cases where TC is much smaller or larger than climatology
- Ultimately, JHT/NHC has final say on updates accepted into operations

Getting MORE out of the MC model

- Extending wind speed probabilities to 7 days
 - Currently only available out to 5 days
 - Experimental, "in-house" 6 and 7 day forecasts
- Integrated GPCE parameter
 - GPCE = Goerss predicted consensus error
 - Currently used in MC model to adjust wind speed probabilities based on expected forecast uncertainty
 - Bring this uncertainty information out of model, provide to forecasters directly
- Time of arrival & departure estimates of 34, 50, and 64-knot winds
 - Based on arrival/departure times of realizations
 - Threshold can be customized based on risk tolerance (e.g., 10th, 50th, 90th, 99th percentiles can be used)
 - Complex, iterative evaluation process between developers, forecasters, social scientists

Time of arrival estimates

Summary

- MC model is a highly-used public product developed within the JHT
- JHT continues to support improvements & additions to the MC model
 - Innovation through forecaster exposure and experience
 - Recent project supports 3 improvements, 3 additions, and a software upgrade
- Success in the JHT directly related to effective communication between developers, forecasters, and users
 - Iterative process of R2O2R (or is it R2O2U2O2R2...?)
 - Operations (NHC) has final say

Thank you!

Acknowledgments

- Research supported by the Joint Hurricane Testbed (USWRP)
- National Hurricane Center points of contact: M. DeMaria, C. Landsea, M. Brennan, D. Brown, C. Mattocks
- Additional National Hurricane Center support: R. Berg, C. Ogden

References

- Goerss, J. S., 2007: Prediction of consensus tropical cyclone track forecast error. *Mon. Wea. Rev.*, 135, 1985–1993.
- Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781–791.
- DeMaria, M., J.A. Knaff, R.D. Knabb, C.A. Lauer, C.R. Sampson, and R.T. DeMaria, 2009: A New Method for Estimating Tropical Cyclone Wind Speed Probabilities. Wea. Forecasting, 24, 1573–1591.
- DeMaria.M., J.A. Knaff, M.J. Brennan, D. Brown, R.D. Knabb, R.T DeMaria, A. Schumacher, C.A. Lauer, D.P. Roberts, C.R. Sampson, P. Santos, D. Sharp, and K.A. Winters, 2013: Improvements to the operational tropical cyclone wind speed probability model. *Wea. Forecasting*, 28, 586-602.